Mathematical Statistics

Spring 2005

Test 4 (Closed Book)

Name:

$$(5+5+6)+(8+8)+(6+4+4+2)+(8+8+4)+(6+4+3+3)+(8+4+4)=100$$

- 1 Consider a random sample $(X_1, X_2, ..., X_n)$ from a Geometric distribution with parameter p.
 - (a) Show that $S = \sum_{i=1}^{n} X_i$ is a sufficient statistic for p.
 - (b) Show that the distribution of $S = \sum_{i=1}^{n} X_i$ is Negative Binomial. (Hint: Use m.g.f.)
 - (c) Show that the conditional distribution of $(X_1, X_2, ..., X_n)$ given S is independent of p.

- Consider a random sample $(X_1, X_2, ..., X_n)$ from a $N(\mu, 64)$.
 - (a) Find a best critical region for testing H_o : $\mu = 44$ against H_a : $\mu = 40$.
 - (b) Find n and c such that $\alpha = 0.05$ and $\beta = 0.10$.

- Consider a random sample $(X_1, X_2, ..., X_n)$ from a Bernoulli(p).
 - (a) To test H_o : p = 0.5 against H_a : p = 0.7, what is the critical region specified by the likelihood ratio test criterion?
 - (b) Is this test uniformly most powerful? Explain carefully.
 - (c) Can H_o be rejected at 0.0592 level of significance if a random sample of size 15 yielded $\sum_{i=1}^{15} X_i = 11$? Note that $\sum_{i=1}^{15} X_i \sim Binomial(15, p)$
 - (d) What is the p-value of this test?

You may want to use Binomial tables for parts (c) and (d).

- Consider a random sample $(X_1, X_2, ..., X_n)$ from a b(1, p) and let $\tau(p) = p$.
 - (a) Find the Cremer-Rao lower bound for the variance of any unbiased estimator of $\tau(p)$.
 - (b) Is \overline{X} UMVUE of $\tau(p)$? Explain.
 - (c) Find the efficiency of the estimate \bar{X} .

- Let $X \sim N(\mu, 100)$. To test $H_o: \mu = 80$ against $H_a: \mu < 80$, let the critical region be defined by $C = \{(x_1, x_2, ..., x_{25}) : \overline{x} \le 77\}$, where \overline{x} is the sample mean of a random sample of size 25 from this distribution.
 - (a) What is the power function $K(\mu)$ of this test?
 - (b) What is the significant level of this test?
 - (c) What are the values of K(80), K(77), and K(74)?
 - (d) What is the p-value corresponding to $\bar{x} = 76.52$?

- Consider a random sample $(X_1, X_2, ..., X_5)$ from a $Poi(\lambda)$, $\lambda > 0$. Suppose we are interested in a Bayes estimator of λ assuming the squared error loss function.
 - (a) Find the posterior distribution of λ given the data, that is $p(\lambda \mid x_1, x_2, ..., x_5)$ if the prior distribution of λ is $h(\lambda) = 4\lambda^2 e^{-2\lambda}$, $\lambda > 0$. Assume $\sum_{i=1}^{5} X_i = 4$.
 - (b) Find the Bayes estimator of λ with respect to the squared error loss function.
 - (c) Show that the Bayes estimator is a weighted average of the MLE of λ and the prior mean with weights $\frac{5}{7}$ and $\frac{2}{7}$ respectively.